Introdução a Dinâmica Estelar (Notas de Aula)

20/09/2022 14:15

Clique aqui para acessar o livro.

 

Sumário

1 Introdução

1.1 Sistemas Astronômicos

1.2 Escalas de Tempo e Livre Caminho Médio

1.2.1 Tempo Dinâmico

1.2.2 Livre Caminho Médio

1.2.3 Tempo de Relaxação

1.3 Aproximação Contínua

2 Sistema em Equilíbrio

2.1 Teorema do Virial

2.1.1 Aplicação do teorema do virial

2.2 Perfis de Luminosidade e Massa

2.2.1 Galáxias elípticas

2.2.2 Galáxias espirais

2.3 Pares de Densidade-Potencial

2.3.1 Massa Pontual

2.3.2 Esfera homogênea

2.3.3 Pares de densidade-potencial de elípticas

2.3.4 Estrutura vertical de um disco gravitacional

2.4 Função de Distribuição

2.4.1 Teorema e equação de Liouville

2.4.2 Equação de Boltzmann-Vlasov

2.4.3 Equação de Boltzmann em alguns sistemas de coordenadas

2.5 Momentos da equação de Boltzmann

2.5.1 Equação de Jeans em alguns sistemas de coordenadas

2.5.2 Aplicação das equações de Jeans

2.5.3 Teorema do virial tensorial

2.6 Teorema de Jeans

2.6.1 Integrais de movimento

2.6.2 Teorema de Jeans

2.7 Aplicação do Teorema de Jeans

2.7.1 Sistemas esféricos

2.7.2 Inversão da função de distribuição

2.7.3 Modelos esféricos e isotrópicos

2.8 Distribuição diferencial de massa

3 Relaxação violenta

3.1 Introdução

3.2 Ergodicidade e mistura no espaço de fase

3.2.1 Função-H de Boltzmann

3.2.2 Teorema da mistura

3.2.3 Relaxação e mistura

3.3 Catástrofe gravo-térmica

3.3.1 Entropia máxima

3.3.2 Instabilidade Gravo-térmica

 

Autor: Gastão Bierrenbach Lima Neto

Tags: Português

Astronomia Extragalática e Cosmologia (Notas de Aula)

20/09/2022 14:15

Clique aqui para acessar o livro.

 

Sumário

1 Breve Introdução Histórica

2 Introdução à cosmologia

2.1 Princípios básicos

2.2 Princípio antrópico

2.3 Expansão do Universo

2.3.1 Paradoxo de Olbers

2.4 História térmica do Universo primordial

2.4.1 Partículas relativísticas no Universo primordial

2.5 Radiação cosmológica de fundo em microondas (RCF ou CMB)

2.5.1 Dipolo cinemático e anisotropias da RCF (CMB)

2.5.2 Equipartição

2.5.3 Recombinação

2.5.4 Temperatura da matéria bariônica intergalática

2.5.5 Entropia da CMB

2.6 Radiação de fundo não cosmológica

2.7 Descrição geométrica do Universo

2.7.1 Redshift

2.7.2 Distâncias

2.7.3 Correção K

2.7.4 Contagem de objetos extragaláticos

2.8 Modelos de Friedmann-Lemaître

2.9 Parâmetros cosmológicos H0, ΩM , ΩΛ

2.9.1 Idade do Universo

2.9.2 Velocidade de recessão e redshift

2.9.3 Horizonte

2.10 Determinação observacional dos parâmetros cosmológicos

2.11 Inflação

2.12 Bariogênese

2.13 Nucleossíntese primordial

2.13.1 Balanço de bárions

2.14 Anisotropias da CMB

2.14.1 Efeito Sachs-Wolfe Integrado

2.14.2 Polarização da CMB

2.15 Antes do Big Bang

3 Formação de estruturas 

3.1 Instabilidade de Jeans

3.1.1 Crescimento de perturbações

3.1.2 Crescimento de perturbações: Universo em expansão

3.1.3 Crescimento de perturbações maiores que o horizonte

3.1.4 Evolução das massas de Jeans e Silk

3.1.5 Velocidades peculiares

3.2 Flutuações primordiais

3.2.1 Matéria escura: quente e fria

3.2.2 Origem das flutuações primordiais

3.3 Tipos de Flutuações

3.4 Espectro de potência de flutuações

3.4.1 Evolução do espectro de potência P(k)

3.4.2 Normalização do espectro de potência

3.4.3 Modelo de “panqueca” de Zel’dovich

3.4.4 Modelo hierárquico

3.4.5 Halos de matéria escura

3.4.6 Matéria escura fria na vizinhança solar

3.5 Oscilações acústicas de bárions (BAO)

3.6 Simulações numéricas

4 Cosmografia, “surveys” e distribuição de galáxias

4.1 Distribuição de galáxias

4.2 Super-aglomerado de galáxias

4.3 Surveys 3D – redshift como distância

4.4 Função de correlação

4.4.1 Função de correlação e espectro de potência

4.4.2 Função de correlação em duas dimensões

4.4.3 Teste de Alcock-Paczynski

4.5 Determinação de distâncias sem redshift

4.5.1 Método de Opik (1922)

4.6 Campo de velocidades peculiares – Distribuição de massa no Universo próximo

4.7 Viés de Malmquist e efeitos de seleção

5 Aglomerados de galáxias

5.1 Histórico

5.2 Formação de aglomerados ricos (cenário hierárquico)

5.3 Catálogos

5.4 Classificação

5.5 Composição (matéria escura + galáxias + plasma)

5.6 Distribuição espacial das galáxias e sub-estruturas

5.7 Gás intra-aglomerado

5.7.1 Observação em raios-X

5.7.2 Observação em rádio – efeito Sunyaev-Zel’dovich

5.8 Determinação de massa

5.8.1 Galáxias e a “massa faltante”

5.8.2 Dinâmica – Teorema do Virial

5.8.3 Medida de redshift e velocidades

5.8.4 Equilíbrio hidrodinâmico: gás emissor de raios-X

5.8.5 Lentes gravitacionais

5.8.6 Comparação entre os indicadores de massa de aglomerados

5.9 Cooling-flow/ cool-core

5.10 Fração de bárions em aglomerados e a densidade do Universo

5.11 Efeitos do Aglomerado nas galáxias e vice-versa

5.11.1 Galáxias cD

5.11.2 Luminosidade difusa intra-aglomerado

5.11.3 Segregação mosfológica

5.11.4 Sequência vermelha e efeito Butcher-Oemler

5.11.5 Perda de gás por pressão de arraste

5.11.6 Assédio (Harassment) galáctico

5.11.7 Decréscimo da taxa de formação estelar

5.11.8 Curva de rotação de espirais em aglomerados

5.11.9 Metalicidade do gás intra-aglomerado

5.12 Emissão rádio extensa e campo magnético

5.13 Relações de escala (LX, TX, σ, YX)

5.14 Colisão de aglomerados

6 Aglomerados pobres e grupos de galáxias

6.1 Grupos compactos de galáxias

6.1.1 Catálogos

6.1.2 Objetos reais ou efeitos de projeção?

6.1.3 Emissão em raios-X

6.1.4 Interação entre galáxias

6.1.5 Instabilidade em relação à fusão

7 Grupo Local

7.1 Massa e raio do Grupo Local

7.2 Membros e vizinhos do Grupo Local

7.3 Galáxias dominantes

7.4 Galáxias anãs

7.5 Galáxias ausentes

7.6 Distribuição e dinâmica

7.7 Magellanic Stream (Corrente de Magalhães)

7.8 Distribuição planar das galáxias satélites

7.9 Movimento em direção a Virgo

8 Formação de galáxias no modelo hierárquico

8.1 Modelo Top-Hat

8.2 Virialização

8.3 Resfriamento do gás

8.4 Função de Press-Schechter – função de massa

8.5 Momento angular de galáxias

8.6 Colapso monolítico X modelo hierárquico

9 Função de luminosidade

9.1 Definição da Função de Luminosidade

9.2 Determinação da FL

9.2.1 Métodos não paramétricos

9.2.2 Descrições paramétricas da função de luminosidade

9.2.3 Estimativas da função de luminosidade

9.3 Origem da função de luminosidade

10 Evolução de galáxias

10.1 Evolução dinâmica

10.1.1 Relaxação de 2-corpos

10.1.2 Relaxação violenta

10.1.3 Fricção dinâmica

10.1.4 Efeito de maré

10.1.5 Fusões de galáxias (“mergers”)

10.2 Síntese evolutiva da população estelar

10.2.1 Classificação de populações estelares

10.2.2 Evolução da população estelar

10.2.3 Função de massa Inicial (IMF)

10.2.4 Taxa de Formação Estelar (SFR)

10.2.5 Evolução química

10.5.6 Idade X Metalicidade

10.3 Observações a alto redshift

10.3.1  Redshift  fotométrico

10.3.2 Galáxias em alto redshift

10.4 Poeira

11 Núcleos ativos

11.1 Seyfert

11.2 LINERs

11.2.1 Objetos de transição

11.3 BL Lac – Blazar

11.4 Markarian

11.5 Radiação síncrotron

11.6 Rádio galáxias

11.6.1 Morfologia da emissão

11.6.2 Jato superluminar

11.7 Quasares, QAOa

11.7.1 Evolução de QSOs

11.8 Floresta Lyα

11.8.1 Sistemas Lyman-α saturados (DLA)

11.9 Variação Temporal

11.10 Modelo unificado e “zoologia” de núcleos ativos

11.10.1 “Motor central”

11.10.2 O motor central pára – BN supermaciços em galáxias “normais”

12 Reionização do Universo

12.1 Fim da ‘Idade das Trevas”

12.2 Esfera de Stromgren

13 Galáxias com surto de formação estelar : “Starburst”

14 Galáxias normais

14.1 Classificação morfológica

14.1.1 Classificação de Hubble

14.1.2 Classificação de Vaucouleurs e outros

14.2 Tipos morfológicos: características

14.2.1 Galáxias anãs e de baixo brilho superficial

14.2.2 Morfologia: dependência com a banda de observação

14.3 Classificação espectral

14.4 Bimodalidade das galáxias

A Supernovas

A.1 Classificação

A.1.1 Taxas

A.2 Hipernovas

A.3 Kilonovas

B Partículas elementares e forças

C Transparência da atmosfera

D Constantes úteis para luminosidade e magnitude

 

Autor: Gastão Bierrenbach Lima Neto

Tags: Português

Fundamental Astronomy

20/09/2022 14:13

Now in its sixth edition this successful undergraduate textbook gives a well-balanced and comprehensive introduction to the topics of classical and modern astronomy. While emphasizing both the astronomical concepts and the underlying physical principles, the text provides a sound basis for more profound studies in the astronomical sciences.

The chapters on galactic and extragalactic astronomy as well as cosmology were extensively modernized in the previous edition. In this new edition they have been further revised to include more recent results. The long chapter on the solar system has been split into two parts: the first one deals with the general properties, and the other one describes individual objects. A new chapter on exoplanets has been added to the end of the book next to the chapter on astrobiology.

In response to the fact that astronomy has evolved enormously over the last few years, only a few chapters of this book have been left unmodified.

Long considered a standard text for physical science majors, Fundamental Astronomy is also an excellent reference and entrée for dedicated amateur astronomers. For their benefit the introductory chapter has been extended to give a brief summary of the different types of celestial objects.

Clique aqui para acessar o livro.

Summary

1 Introduction
1.1 Celestial Objects
1.2 The Role of Astronomy
1.3 Astronomical Objects of Research
1.4 The Scale of the Universe
2 Spherical Astronomy
2.1 Spherical Trigonometry
2.2 The Earth
2.3 The Celestial Sphere
2.4 The Horizontal System
2.5 The Equatorial System
2.6 Rising and Setting Times
2.7 The Ecliptic System
2.8 The Galactic Coordinates
2.9 Perturbations of Coordinates
2.10 Positional Astronomy
2.11 Constellations
2.12 Star Catalogues and Maps
2.13 Sidereal and Solar Time
2.14 Astronomical Time Systems
2.15 Calendars
2.16 Examples
2.17 Exercises
3 Observations and Instruments
3.1 Observing Through the Atmosphere
3.2 Optical Telescopes
3.3 Detectors and Instruments
3.4 Radio Telescopes
3.5 Other Wavelength Regions
3.6 Other Forms of Energy
3.7 Examples
3.8 Exercises
4 Photometric Concepts and Magnitudes 
4.1 Intensity, Flux Density and Luminosity
4.2 Apparent Magnitudes
4.3 Magnitude Systems
4.4 Absolute Magnitudes
4.5 Extinction and Optical Thickness
4.6 Examples
4.7 Exercises
5 Radiation Mechanisms
5.1 Radiation of Atoms and Molecules
5.2 The Hydrogen Atom
5.3 Line Profiles
5.4 Quantum Numbers, Selection Rules, Population Numbers
5.5 Molecular Spectra
5.6 Continuous Spectra
5.7 Blackbody Radiation
5.8 Temperatures
5.9 Other Radiation Mechanisms
5.10 Radiative Transfer
5.11 Examples
5.12 Exercises
6 Celestial Mechanics 
6.1 Equations of Motion
6.2 Solution of the Equation of Motion
6.3 Equation of the Orbit and Kepler’s First Law
6.4 Orbital Elements
6.5 Kepler’s Second and Third Law
6.6 Systems of Several Bodies
6.7 Orbit Determination
6.8 Position in the Orbit
6.9 Escape Velocity
6.10 Virial Theorem
6.11 The Jeans Limit
6.12 Examples
6.13 Exercises
7 The Solar System 
7.1 Classification of Objects
7.2 Planetary Configurations
7.3 Orbit of the Earth and Visibility of the Sun
7.4 The Orbit of the Moon
7.5 Eclipses and Occultations
7.6 The Structure and Surfaces of Planets
7.7 Atmospheres and Magnetospheres
7.8 Albedos
7.9 Photometry, Polarimetry and Spectroscopy
7.10 Thermal Radiation of the Planets
7.11 Origin of the Solar System
7.12 Nice Models
7.13 Examples
7.14 Exercises
8 Objects of the Solar System 
8.1 Mercury
8.2 Venus
8.3 The Earth and the Moon
8.4 Mars
8.5 Jupiter
8.6 Saturn
8.7 Uranus
8.8 Neptune
8.9 Dwarf Planets
8.10 Minor Bodies
8.11 Asteroids
8.12 Comets
8.13 Meteoroids
8.14 Interplanetary Dust and Other Particles
8.15 Examples
8.16 Exercises
9 Stellar Spectra 
9.1 Measuring Spectra
9.2 The Harvard Spectral Classification
9.3 The Yerkes Spectral Classification
9.4 Peculiar Spectra
9.5 The Hertzsprung–Russell Diagram
9.6 Model Atmospheres
9.7 What Do the Observations Tell Us?
9.8 Exercise
10 Binary Stars and Stellar Masses 
10.1 Visual Binaries
10.2 Astrometric Binary Stars
10.3 Spectroscopic Binaries
10.4 Photometric Binary Stars
10.5 Examples
10.6 Exercises
11 Stellar Structure
11.1 Internal Equilibrium Conditions
11.2 Physical State of the Gas
11.3 Stellar Energy Sources
11.4 Stellar Models
11.5 Examples
11.6 Exercises
12 Stellar Evolution
12.1 Evolutionary Time Scales
12.2 The Contraction of Stars Towards the Main Sequence
12.3 The Main Sequence Phase
12.4 The Giant Phase
12.5 The Final Stages of Evolution
12.6 The Evolution of Close Binary Stars
12.7 Comparison with Observations
12.8 The Origin of the Elements
12.9 Example
12.10 Exercises
13 The Sun
13.1 Internal Structure
13.2 The Atmosphere
13.3 Solar Activity
13.4 Solar Wind and Space Weather
13.5 Example
13.6 Exercises
14 Variable Stars
14.1 Classification
14.2 Pulsating Variables
14.3 Eruptive Variables
14.4 Supernovae
14.5 Examples
14.6 Exercises
15 Compact Stars
15.1 White Dwarfs
15.2 Neutron Stars
15.3 Black Holes
15.4 X-ray Binaries
15.5 Examples
15.6 Exercises
16 The Interstellar Medium
16.1 Interstellar Dust
16.2 Interstellar Gas
16.3 Interstellar Molecules
16.4 The Formation of Protostars
16.5 Planetary Nebulae
16.6 Supernova Remnants
16.7 The Hot Corona of the Milky Way
16.8 Cosmic Rays and the Interstellar Magnetic Field
16.9 Examples
16.10 Exercises
17 Star Clusters and Associations 
17.1 Associations
17.2 Open Star Clusters
17.3 Globular Star Clusters
17.4 Example
17.5 Exercises
18 The Milky Way
18.1 Methods of Distance Measurement
18.2 Stellar Statistics
18.3 The Rotation of the Milky Way
18.4 Structural Components of the Milky Way
18.5 The Formation and Evolution of the Milky Way
18.6 Examples
18.7 Exercises
19 Galaxies 
19.1 The Classification of Galaxies
19.2 Luminosities and Masses
19.3 Galactic Structures
19.4 Dynamics of Galaxies
19.5 Stellar Ages and Element Abundances in Galaxies
19.6 Systems of Galaxies
19.7 Active Galaxies and Quasars
19.8 The Origin and Evolution of Galaxies
19.9 Exercises
20 Cosmology
20.1 Cosmological Observations
20.2 The Cosmological Principle
20.3 Homogeneous and Isotropic Universes
20.4 The Friedmann Models
20.5 Cosmological Tests
20.6 History of the Universe
20.7 The Formation of Structure
20.8 The Future of the Universe
20.9 Examples
20.10 Exercises
21 Astrobiology
21.1 What Is Life?
21.2 Chemistry of Life
21.3 Prerequisites of Life
21.4 Hazards
21.5 Origin of Life
21.6 Are We Martians?
21.7 Life in the Solar System
21.8 Detecting Life
21.9 SETI—Detecting Intelligent Life
21.10 Number of Civilisations
21.11 Exercises
22 Exoplanets
22.1 Other Planetary Systems
22.2 Observational Methods
22.3 Properties of Exoplanets
22.4 Exercises

 

Editors: Hannu Karttunen, Pekka Kroger, Heikki Oja, Markku Poutanen, Karl Johan Donner

Tags: Inglês

Introduction to Particle and Astroparticle Physics: Multimessenger Astronomy and Its Particle Physics Foundations

20/09/2022 14:13

This book introduces particle physics, astrophysics and cosmology. Starting from an experimental perspective, it provides a unified view of these fields that reflects the very rapid advances being made. This new edition has a number of improvements and has been updated to include material on the Higgs particle and to describe the recently discovered gravitational waves. Astroparticle and particle physics share a common problem: we still don’t have a description of the main ingredients of the Universe from the point of view of its energy budget. Addressing these fascinating issues, and offering a balanced introduction to particle and astroparticle physics that requires only a basic understanding of quantum and classical physics, this book is a valuable resource, particularly for advanced undergraduate students and for those embarking on graduate courses. It includes exercises that offer readers practical insights. It can be used equally well as a self-study book, a reference and a textbook.

Clique aqui para acessar o livro.

Summary

1 Understanding the Universe: Cosmology, Astrophysics, Particles, and Their Interactions
1.1 Particle and Astroparticle Physics
1.2 Particles and Fields
1.3 The Particles of Everyday Life
1.4 The Modern View of Interactions: Quantum Fields and Feynman Diagrams
1.5 A Quick Look at the Universe
1.6 Cosmic Rays
1.7 Multimessenger Astrophysics
2 Basics of Particle Physics 
2.1 The Atom
2.2 The Rutherford Experiment
2.3 Inside the Nuclei: b Decay and the Neutrino
2.4 A Look into the Quantum World: Schrödinger’s Equation
2.4.1 Properties of Schrödinger’s Equation and of its Solutions
2.4.2 Uncertainty and the Scale of Measurements
2.5 The Description of Scattering: Cross Section and Interaction Length
2.5.1 Total Cross Section
2.5.2 Differential Cross Sections
2.5.3 Cross Sections at Colliders
2.5.4 Partial Cross Sections
2.5.5 Interaction Length
2.6 Description of Decay: Width and Lifetime
2.7 Fermi Golden Rule and Rutherford Scattering
2.7.1 Transition Amplitude
2.7.2 Flux

2.7.3 Density of States
2.7.4 Rutherford Cross Section
2.8 Particle Scattering in Static Fields
2.8.1 Extended Charge Distributions (Nonrelativistic)
2.8.2 Finite Range Interactions
2.8.3 Electron Scattering
2.9 Special Relativity
2.9.1 Lorentz Transformations
2.9.2 Space–Time Interval
2.9.3 Velocity Four-Vector
2.9.4 Energy and Momentum
2.9.5 Examples of Relativistic Dynamics
2.9.6 Mandelstam Variables
2.9.7 Lorentz Invariant Fermi Rule
2.9.8 The Electromagnetic Tensor and the Covariant Formulation of Electromagnetism
2.10 Natural Units
3 Cosmic Rays and the Development of Particle Physics 
3.1 The Puzzle of Atmospheric Ionization and the Discovery of Cosmic Rays
3.1.1 Underwater Experiments and Experiments Carried Out at Altitude
3.1.2 The Nature of Cosmic Rays
3.2 Cosmic Rays and the Beginning of Particle Physics
3.2.1 Relativistic Quantum Mechanics and Antimatter: From the Schrödinger Equation to the Klein–Gordon and Dirac Equations
3.2.2 The Discovery of Antimatter
3.2.3 Cosmic Rays and the Progress of Particle Physics
3.2.4 The l Lepton and the p Mesons
3.2.5 Strange Particles
3.2.6 Mountain-Top Laboratories
3.3 Particle Hunters Become Farmers
3.4 The Recent Years
4 Particle Detection 
4.1 Interaction of Particles with Matter
4.1.1 Charged Particle Interactions
4.1.2 Range
4.1.3 Multiple Scattering
4.1.4 Photon Interactions
4.1.5 Nuclear (Hadronic) Interactions
4.1.6 Interaction of Neutrinos

4.1.7 Electromagnetic Showers
4.1.8 Hadronic Showers
4.2 Particle Detectors
4.2.1 Track Detectors
4.2.2 Photosensors
4.2.3 Cherenkov Detectors
4.2.4 Transition Radiation Detectors
4.2.5 Calorimeters
4.3 High-Energy Particles
4.3.1 Artificial Accelerators
4.3.2 Cosmic Rays as Very-High-Energy Beams
4.4 Detector Systems and Experiments at Accelerators
4.4.1 Examples of Detectors for Fixed-Target Experiments
4.4.2 Examples of Detectors for Colliders
4.5 Cosmic-Ray Detectors
4.5.1 Interaction of Cosmic Rays with the Atmosphere: Extensive Air Showers
4.5.2 Detectors of Charged Cosmic Rays
4.5.3 Detection of Hard Photons
4.5.4 Neutrino Detection
4.6 Detection of Gravitational Waves
5 Particles and Symmetries
5.1 A Zoo of Particles
5.2 Symmetries and Conservation Laws: The Noether Theorem
5.3 Symmetries and Groups
5.3.1 A Quantum Mechanical View of the Noether’s
Theorem
5.3.2 Some Fundamental Symmetries in Quantum
Mechanics
5.3.3 Unitary Groups and Special Unitary Groups
5.3.4 SU(2)
5.3.5 SU(3)
5.3.6 Discrete Symmetries: Parity, Charge Conjugation, and Time Reversal
5.3.7 Isospin
5.3.8 The Eightfold Way
5.4 The Quark Model
5.4.1 SU(3)flavor
5.4.2 Color
5.4.3 Excited States (Nonzero Angular Momenta Between Quarks)

5.4.4 The Charm Quark
5.4.5 Beauty and Top
5.4.6 Exotic Hadrons
5.4.7 Quark Families
5.5 Quarks and Partons
5.5.1 Elastic Scattering
5.5.2 Inelastic Scattering Kinematics
5.5.3 Deep Inelastic Scattering
5.5.4 The Quark–Parton Model
5.5.5 The Number of Quark Colors
5.6 Leptons
5.6.1 The Discovery of the ¿ Lepton
5.6.2 Three Neutrinos
5.7 The Particle Data Group and the Particle Data Book
5.7.1 PDG: Estimates of Physical Quantities
5.7.2 Averaging Procedures by the PDG
6 Interactions and Field Theories
6.1 The Lagrangian Representation of a Dynamical System
6.1.1 The Lagrangian and the Noether Theorem
6.1.2 Lagrangians and Fields; Lagrangian Density
6.1.3 Lagrangian Density and Mass
6.2 Quantum Electrodynamics (QED)
6.2.1 Electrodynamics
6.2.2 Minimal Coupling
6.2.3 Gauge Invariance
6.2.4 Dirac Equation Revisited
6.2.5 Klein–Gordon Equation Revisited
6.2.6 The Lagrangian for a Charged Fermion in an Electromagnetic Field: Electromagnetism as a Field Theory
6.2.7 An Introduction to Feynman Diagrams: Electromagnetic Interactions Between Charged Spinless Particles
6.2.8 Electron–Muon Elastic Scattering (el ! el)
6.2.9 Feynman Diagram Rules for QED
6.2.10 Muon Pair Production from ee þ Annihilation
(ee þ ! ll þ )
6.2.11 Bhabha Scattering ee þ ! ee þ
6.2.12 Renormalization and Vacuum Polarization
6.3 Weak Interactions
6.3.1 The Fermi Model of Weak Interactions
6.3.2 Parity Violation

6.3.3 V-A Theory
6.3.4 “Left” and “Right” Chiral Particle States
6.3.5 Intermediate Vector Bosons
6.3.6 The Cabibbo Angle and the GIM Mechanism
6.3.7 Extension to Three Quark Families: The CKM Matrix
6.3.8 C P Violation
6.3.9 Matter–Antimatter Asymmetry
6.4 Strong Interactions and QCD
6.4.1 Yang–Mills Theories
6.4.2 The Lagrangian of QCD
6.4.3 Vertices in QCD; Color Factors
6.4.4 The Strong Coupling
6.4.5 Asymptotic Freedom and Confinement
6.4.6 Hadronization; Final States from Hadronic Interactions
6.4.7 Hadronic Cross Section
7 The Higgs Mechanism and the Standard Model of Particle Physics 
7.1 The Higgs Mechanism and the Origin of Mass
7.1.1 Spontaneous Symmetry Breaking
7.1.2 An Example from Classical Mechanics
7.1.3 Application to Field Theory: Massless Fields Acquire Mass
7.1.4 From SSB to the Higgs Mechanism: Gauge Symmetries and the Mass of Gauge Bosons
7.2 Electroweak Unification
7.2.1 The Formalism of the Electroweak Theory
7.2.2 The Higgs Mechanism in the Electroweak Theory and the Mass of the Electroweak Bosons
7.2.3 The Fermion Masses
7.2.4 Interactions Between Fermions and Gauge Bosons
7.2.5 Self-interactions of Gauge Bosons
7.2.6 Feynman Diagram Rules for the Electroweak Interaction
7.3 The Lagrangian of the Standard Model
7.3.1 The Higgs Particle in the Standard Model
7.3.2 Standard Model Parameters
7.3.3 Accidental Symmetries
7.4 Observables in the Standard Model
7.5 Experimental Tests of the Standard Model at Accelerators
7.5.1 Data Versus Experiments: LEP (and the Tevatron)

7.5.2 LHC and the Discovery of the Higgs Boson
7.6 Beyond the Minimal SM of Particle Physics; Unification of Forces
7.6.1 Grand Unified Theories
7.6.2 Supersymmetry
7.6.3 Strings and Extra Dimensions; Superstrings
7.6.4 Compositeness
8 The Standard Model of Cosmology and the Dark Universe
8.1 Experimental Cosmology
8.1.1 The Universe Is Expanding
8.1.2 Expansion Is Accelerating
8.1.3 Cosmic Microwave Background
8.1.4 Primordial Nucleosynthesis
8.1.5 Astrophysical Evidence for Dark Matter
8.1.6 Age of the Universe: A First Estimate
8.2 General Relativity
8.2.1 Equivalence Principle
8.2.2 Light and Time in a Gravitational Field
8.2.3 Flat and Curved Spaces
8.2.4 Einstein’s Equations
8.2.5 The Friedmann–Lemaitre–Robertson–Walker Model (Friedmann Equations)
8.2.6 Critical Density of the Universe; Normalized Densities
8.2.7 Age of the Universe from the Friedmann Equations and Evolution Scenarios
8.2.8 Black Holes
8.2.9 Gravitational Waves
8.3 Past, Present, and Future of the Universe
8.3.1 Early Universe
8.3.2 Inflation and Large-Scale Structures
8.4 The KCDM Model
8.4.1 Dark Matter Decoupling and the “WIMP Miracle”
8.5 What Is Dark Matter Made of, and How Can It Be Found?
8.5.1 WISPs: Neutrinos, Axions and ALPs
8.5.2 WIMPs
8.5.3 Other Nonbaryonic Candidates

9 The Properties of Neutrinos
9.1 Sources and Detectors; Evidence of the Transmutation of the Neutrino Flavor
9.1.1 Solar Neutrinos, and the Solar Neutrino Problem
9.1.2 Neutrino Oscillation in a Two-Flavor System
9.1.3 Long-Baseline Reactor Experiments
9.1.4 Estimation of ”e ! ”l Oscillation Parameters
9.1.5 Atmospheric Neutrinos and the ”l ! ”¿ Oscillation
9.1.6 Phenomenology of Neutrino Oscillations: Extension to Three Families
9.1.7 Short-Baseline Reactor Experiments, and the Determination of h13
9.1.8 Accelerator Neutrino Beams
9.1.9 Explicit Appearance Experiment
9.1.10 A Gift from Nature: Geo-Neutrinos
9.2 Neutrino Oscillation Parameters
9.3 Neutrino Masses
9.3.1 The Constraints from Cosmological and Astrophysical Data
9.3.2 Direct Measurements of the Electron Neutrino Mass: Beta Decays
9.3.3 Direct Measurements of the Muon- and Tau-Neutrino Masses
9.3.4 Incorporating Neutrino Masses in the Theory
9.3.5 Majorana Neutrinos and the Neutrinoless Double Beta Decay
9.3.6 Present Mass Limits and Prospects
10 Messengers from the High-Energy Universe 
10.1 How Are High-Energy Cosmic Rays Produced?
10.1.1 Acceleration of Charged Cosmic Rays: The Fermi Mechanism
10.1.2 Production of High-Energy Gamma Rays and Neutrinos
10.1.3 Top-Down Mechanisms; Possible Origin from Dark Matter Particles
10.2 Possible Acceleration Sites and Sources
10.2.1 Stellar Endproducts as Acceleration Sites
10.2.2 Other Galactic Sources
10.2.3 Extragalactic Acceleration Sites: Active Galactic Nuclei and Other Galaxies
10.2.4 Extragalactic Acceleration Sites: Gamma Ray Bursts

10.2.5 Gamma Rays and the Origin of Cosmic Rays: The Roles of SNRs and AGN
10.2.6 Sources of Neutrinos
10.2.7 Sources of Gravitational Waves
10.3 The Propagation
10.3.1 Magnetic Fields in the Universe
10.3.2 Photon Background
10.3.3 Propagation of Charged Cosmic Rays
10.3.4 Propagation of Photons
10.3.5 Propagation of Neutrinos
10.3.6 Propagation of Gravitational Waves
10.4 More Experimental Results
10.4.1 Charged Cosmic Rays: Composition, Extreme Energies, Correlation with Sources
10.4.2 Photons: Different Source Types, Transients, Fundamental Physics
10.4.3 Astrophysical Neutrinos
10.4.4 Gravitational Radiation
10.5 Future Experiments and Open Questions
10.5.1 Charged Cosmic Rays
10.5.2 Gamma Rays
10.5.3 The PeV Region
10.5.4 High Energy Neutrinos
10.5.5 Gravitational Waves
10.5.6 Multi-messenger Astrophysics
11 Astrobiology and the Relation of Fundamental Physics to Life
11.1 What Is Life?
11.1.1 Schrödinger’s Definition of Life
11.1.2 The Recipe of Life
11.1.3 Life in Extreme Environments
11.1.4 The Kickoff
11.2 Life in the Solar System, Outside Earth
11.2.1 Planets of the Solar System
11.2.2 Satellites of Giant Planets
11.3 Life Outside the Solar System, and the Search for Alien Civilizations
11.3.1 The “Drake Equation”
11.3.2 The Search for Extrasolar Habitable Planets
11.3.3 The Fermi Paradox

11.3.4 Searching for Biosignatures
11.3.5 Looking for Technological Civilizations: Listening to Messages from Space
11.3.6 Sending Messages to the Universe
11.4 Conclusions

Author: Alessandro De Angelis, Mário Pimenta

Tags: Inglês

Introduction to General Relativity: A Course for Undergraduate Students of Physics

20/09/2022 14:13

Following the approach of Lev Landau and Evgenii Lifshitz, this book introduces the theory of special and general relativity with the Lagrangian formalism and the principle of least action. This method allows the complete theory to be constructed starting from a small number of assumptions, and is the most natural approach in modern theoretical physics. The book begins by reviewing Newtonian mechanics and Newtonian gravity with the Lagrangian formalism and the principle of least action, and then moves to special and general relativity. Most calculations are presented step by step, as is done on the board in class. The book covers recent advances in gravitational wave astronomy and provides a general overview of current lines of research in gravity. It also includes numerous examples and problems in each chapter.

Clique aqui para acessar o livro.

Summary

1 Introduction
1.1 Special Principle of Relativity
1.2 Euclidean Space
1.3 Scalars, Vectors, and Tensors
1.4 Galilean Transformations
1.5 Principle of Least Action
1.6 Constants of Motion
1.7 Geodesic Equations
1.8 Newton’s Gravity
1.9 Kepler’s Laws
1.10 Maxwell’s Equations
1.11 Michelson–Morley Experiment
1.12 Towards the Theory of Special Relativity

2 Special Relativity
2.1 Einstein’s Principle of Relativity
2.2 Minkowski Spacetime
2.3 Lorentz Transformations
2.4 Proper Time
2.5 Transformation Rules
2.5.1 Superluminal Motion
2.6 Example: Cosmic Ray Muons

3 Relativistic Mechanics 
3.1 Action for a Free Particle
3.2 Momentum and Energy
3.2.1 3-Dimensional Formalism
3.2.2 4-Dimensional Formalism

3.3 Massless Particles
3.4 Particle Collisions
3.5 Example: Colliders Versus Fixed-Target Accelerators
3.6 Example: The GZK Cut-Off
3.7 Multi-body Systems
3.8 Lagrangian Formalism for Fields
3.9 Energy-Momentum Tensor
3.10 Examples
3.10.1 Energy-Momentum Tensor of a Free Point-Like
Particle
3.10.2 Energy-Momentum Tensor of a Perfect Fluid

4 Electromagnetism 
4.1 Action
4.2 Motion of a Charged Particle
4.2.1 3-Dimensional Formalism
4.2.2 4-Dimensional Formalism
4.3 Maxwell’s Equations in Covariant Form
4.3.1 Homogeneous Maxwell’s Equations
4.3.2 Inhomogeneous Maxwell’s Equations
4.4 Gauge Invariance
4.5 Energy-Momentum Tensor of the Electromagnetic Field
4.6 Examples
4.6.1 Motion of a Charged Particle in a Constant Uniform Electric Field
4.6.2 Electromagnetic Field Generated by a Charged

5 Riemannian Geometry 
5.1 Motivations
5.2 Covariant Derivative
5.2.1 Definition
5.2.2 Parallel Transport
5.2.3 Properties of the Covariant Derivative
5.3 Useful Expressions
5.4 Riemann Tensor
5.4.1 Definition
5.4.2 Geometrical Interpretation
5.4.3 Ricci Tensor and Scalar Curvature
5.4.4 Bianchi Identities
6 General Relativity
6.1 General Covariance
6.2 Einstein Equivalence Principle
6.3 Connection to the Newtonian Potential
6.4 Locally Inertial Frames
6.4.1 Locally Minkowski Reference Frames
6.4.2 Locally Inertial Reference Frames
6.5 Measurements of Time Intervals
6.6 Example: GPS Satellites
6.7 Non-gravitational Phenomena in Curved Spacetimes
7 Einstein’s Gravity 
7.1 Einstein Equations
7.2 Newtonian Limit
7.3 Einstein–Hilbert Action
7.4 Matter Energy-Momentum Tensor
7.4.1 Definition
7.4.2 Examples
7.4.3 Covariant Conservation of the Matter Energy-Momentum Tensor
7.5 Pseudo-Tensor of Landau–Lifshitz
8 Schwarzschild Spacetime 
8.1 Spherically Symmetric Spacetimes
8.2 Birkhoff’s Theorem
8.3 Schwarzschild Metric
8.4 Motion in the Schwarzschild Metric
8.5 Schwarzschild Black Holes
8.6 Penrose Diagrams
8.6.1 Minkowski Spacetime
8.6.2 Schwarzschild Spacetime
9 Classical Tests of General Relativity 
9.1 Gravitational Redshift of Light
9.2 Perihelion Precession of Mercury
9.3 Deflection of Light
9.4 Shapiro’s Effect
9.5 Parametrized Post-Newtonian Formalism

10 Black Holes 
10.1 Definition
10.2 Reissner–Nordström Black Holes
10.3 Kerr Black Holes
10.3.1 Equatorial Circular Orbits
10.3.2 Fundamental Frequencies
10.3.3 Frame Dragging
10.4 No-Hair Theorem
10.5 Gravitational Collapse
10.5.1 Dust Collapse
10.5.2 Homogeneous Dust Collapse
10.6 Penrose Diagrams
10.6.1 Reissner–Nordström Spacetime
10.6.2 Kerr Spacetime
10.6.3 Oppenheimer–Snyder Spacetime
11 Cosmological Models
11.1 Friedmann–Robertson–Walker Metric
11.2 Friedmann Equations
11.3 Cosmological Models
11.3.1 Einstein Universe
11.3.2 Matter Dominated Universe
11.3.3 Radiation Dominated Universe
11.3.4 Vacuum Dominated Universe
11.4 Properties of the Friedmann–Robertson–Walker Metric
11.4.1 Cosmological Redshift
11.4.2 Particle Horizon
11.5 Primordial Plasma
11.6 Age of the Universe
11.7 Destiny of the Universe

12 Gravitational Waves 
12.1 Historical Overview
12.2 Gravitational Waves in Linearized Gravity
12.2.1 Harmonic Gauge
12.2.2 Transverse-Traceless Gauge
12.3 Quadrupole Formula
12.4 Energy of Gravitational Waves

12.5 Examples
12.5.1 Gravitational Waves from a Rotating Neutron Star
12.5.2 Gravitational Waves from a Binary System
12.6 Astrophysical Sources
12.6.1 Coalescing Black Holes
12.6.2 Extreme-Mass Ratio Inspirals
12.6.3 Neutron Stars
12.7 Gravitational Wave Detectors
12.7.1 Resonant Detectors
12.7.2 Interferometers
12.7.3 Pulsar Timing Arrays

13 Beyond Einstein’s Gravity
13.1 Spacetime Singularities
13.2 Quantization of Einstein’s Gravity
13.3 Black Hole Thermodynamics and Information Paradox
13.4 Cosmological Constant Problem
Author: Cosimo Bambi

Tags: Inglês

Principles of Astrophysics: Using Gravity and Stellar Physics to Explore the Cosmos

20/09/2022 14:13

This book gives a survey of astrophysics at the advanced undergraduate level. It originates from a two-semester course sequence at Rutgers University that is meant to appeal not only to astrophysics students but also more broadly to physics and engineering students. The organization is driven more by physics than by astronomy; in other words, topics are first developed in physics and then applied to astronomical systems that can be investigated, rather than the other way around.

The first half of the book focuses on gravity. Gravity is the dominant force in many astronomical systems, so a tremendous amount can be learned by studying gravity, motion and mass. The theme in this part of the book, as well as throughout astrophysics, is using motion to investigate mass. The goal of Chapters 2-11 is to develop a progressively richer understanding of gravity as it applies to objects ranging from planets and moons to galaxies and the universe as a whole. The second half uses other aspects of physics to address one of the big questions. While “Why are we here?” lies beyond the realm of physics, a closely related question is within our reach: “How did we get here?” The goal of Chapters 12-21 is to understand the physics behind the remarkable story of how the Universe, Earth and life were formed. This book assumes familiarity with vector calculus and introductory physics (mechanics, electromagnetism, gas physics and atomic physics); however, all of the physics topics are reviewed as they come up (and vital aspects of vector calculus are reviewed in the Appendix).

This volume is aimed at undergraduate students majoring in astrophysics, physics or engineering.

Clique aqui para acessar o livro.

Summary

1 Introduction: Tools of the Trade 
1.1 What Is Gravity?
1.2 Dimensions and Units
1.2.1 Fundamental Dimensions
1.2.2 Constants of Nature
1.2.3 Astrophysical Units
1.2.4 Dimensional Analysis
1.3 Using the Tools
1.3.1 Phases of an Electron Gas
1.3.2 Stars, Familiar and Exotic

Part I Using Gravity and Motion to Measure Mass
2 Celestial Mechanics
2.1 Motions in the Sky
2.2 Laws of Motion
2.3 Law of Gravity

3 Gravitational One-Body Problem
3.1 Deriving Kepler’s Laws
3.2 Using Kepler III: Motion ! Mass
3.2.1 The Black Hole at the Center of the Milky Way
3.2.2 Supermassive Black Holes in Other Galaxies
3.2.3 Active Galactic Nuclei
3.3 Related Concepts
3.3.1 Sphere of Influence
3.3.2 Stellar Dynamical Evaporation
4 Gravitational Two-Body Problem 
4.1 Equivalent One-Body Problem
4.1.1 Setup
4.1.2 Motion
4.1.3 Energy and Angular Momentum
4.1.4 Velocity Curve
4.1.5 Application to the Solar System
4.1.6 Kepler III Revisited
4.2 Binary Stars
4.2.1 Background: Inclination
4.2.2 Visual Binary
4.2.3 Spectroscopic Binary
4.2.4 Eclipsing Binary
4.3 Extrasolar Planets
4.3.1 Doppler Planets
4.3.2 Transiting Planets
4.3.3 Status of Exoplanet Research

5 Tidal Forces
5.1 Derivation of the Tidal Force
5.2 Effects of Tidal Forces
5.2.1 Earth/Moon
5.2.2 Jupiter’s Moon Io
5.2.3 Extrasolar Planets
5.3 Tidal Disruption

6 Gravitational Three-Body Problem 
6.1 Two “Stars” and One “Planet”
6.1.1 Theory: Lagrange Points
6.1.2 Applications
6.2 One “Planet” and Two “Moons”
6.2.1 Theory: Resonances
6.2.2 Applications

7 Extended Mass Distributions: Spiral Galaxies
7.1 Galaxy Properties
7.1.1 Luminosity Profiles
7.1.2 Concepts of Motion
7.2 Equations of Motion
7.2.1 Spherical Symmetry
7.2.2 Axial Symmetry
7.3 Rotational Dynamics
7.3.1 Predictions
7.3.2 Observations and Interpretation
7.3.3 Cold Dark Matter
7.3.4 Is Dark Matter Real?
7.4 Beyond Rotation
7.4.1 Tangential Motion
7.4.2 Vertical Motion
7.4.3 Radial Motion
7.4.4 Application to Spiral Arms

8 N-Body Problem: Elliptical Galaxies
8.1 Gravitational N-Body Problem
8.1.1 Equations of Motion
8.1.2 Conservation of Energy
8.1.3 Virial Theorem
8.1.4 A Simple Application: N = 2
8.2 Elliptical Galaxies
8.2.1 Potential Energy
8.2.2 Kinetic Energy
8.2.3 Mass Estimate
8.3 Galaxy Interactions
8.3.1 Fly-By
8.3.2 Collision
8.4 Other N-Body Problems
9 Bending of Light by Gravity
9.1 Principles of Gravitational Lensing
9.1.1 Gravitational Deflection
9.1.2 Lens Equation
9.1.3 Lensing by a Point Mass
9.1.4 Distortion and Magnification
9.1.5 Time Delay
9.2 Microlensing
9.2.1 Theory
9.2.2 Observations
9.2.3 Binary Lenses
9.2.4 Planets
9.3 Strong Lensing
9.3.1 Extended Mass Distribution
9.3.2 Circular Mass Distribution
9.3.3 Singular Isothermal Sphere
9.3.4 Singular Isothermal Ellipsoid
9.3.5 Spherical Galaxy with External Shear
9.3.6 Science with Galaxy Strong Lensing
9.4 Weak Lensing

10 Relativity 
10.1 Space and Time: Classical View
10.2 Special Theory of Relativity
10.2.1 Lorentz Transformation
10.2.2 Loss of Simultaneity
10.2.3 Time Dilation
10.2.4 Doppler Effect
10.2.5 Length Contraction
10.3 General Theory of Relativity
10.3.1 Concepts of General Relativity
10.3.2 Principle of Equivalence
10.3.3 Curvature of Spacetime
10.3.4 Gravitational Redshift and Time Dilation
10.4 Applications of General Relativity
10.4.1 Mercury’s Perihelion Shift (1916)
10.4.2 Bending of Light (1919)
10.4.3 Gravitational Redshift on Earth (1960)
10.4.4 Gravitational Redshift from a White Dwarf (1971)
10.4.5 Flying Clocks (1971)
10.4.6 Global Positioning System (1989)
10.5 Mathematics of Relativity
10.5.1 Spacetime Interval
10.5.2 4-Vectors
10.5.3 Relativistic Momentum and Energy
10.6 Black Holes
10.6.1 Schwarzschild Metric
10.6.2 Spacetime Geometry
10.6.3 Particle in a Circular Orbit
10.6.4 General Motion Around a Black Hole
10.6.5 Gravitational Deflection
10.7 Other Effects

11 Cosmology: Expanding Universe 
11.1 Hubble’s Law and the Expanding Universe
11.2 Relativistic Cosmology
11.2.1 Robertson-Walker Metric
11.2.2 The Friedmann Equation
11.2.3 Einstein’s Greatest Blunder
11.2.4 FRW Cosmology
11.3 Observational Cosmology
11.3.1 Cosmological Redshift
11.3.2 Cosmological Distances
11.3.3 Results

Part II Using Stellar Physics to Explore the Cosmos
12 Planetary Atmospheres
12.1 Kinetic Theory of Gases
12.1.1 Temperature and the Boltzmann Distribution
12.1.2 Maxwell-Boltzmann Distribution of Particle Speeds
12.1.3 Pressure and the Ideal Gas Law
12.1.4 Assumptions in the Ideal Gas Law
12.2 Hydrostatic Equilibrium
12.3 Planetary Atmospheres
12.3.1 Density Profile
12.3.2 Exosphere
12.3.3 Evaporation

13 Planetary Temperatures
13.1 Blackbody Radiation
13.1.1 Luminosity
13.1.2 Spectrum
13.1.3 Color
13.1.4 Pressure
13.2 Predicting Planet Temperatures
13.3 Atmospheric Heating
13.3.1 One Layer
13.3.2 Many Layers
13.3.3 Optical Depth
13.4 Interaction of Light with Matter
13.4.1 Photoionization
13.4.2 Electron Excitation
13.4.3 Molecular Vibration

13.4.4 Molecular Rotation
13.4.5 Recap
13.5 Greenhouse Effect and Climate Change
13.5.1 Earth
13.5.2 Venus

14 Stellar Atmospheres 
14.1 Atomic Excitation and Ionization
14.1.1 Energy Level Occupation
14.1.2 Ionization Stages
14.1.3 Application to Hydrogen
14.2 Stellar Spectral Classification

15 Nuclear Fusion 
15.1 What Powers the Sun?
15.2 Physics of Fusion
15.2.1 Mass and Energy Scales
15.2.2 Requirements for Fusion
15.2.3 Cross Section
15.2.4 Reaction Rate
15.3 Nuclear Reactions in Stars
15.3.1 Cast of Characters
15.3.2 Masses and Binding Energies
15.3.3 Burning Hydrogen Into Helium
15.4 Solar Neutrinos
15.4.1 Neutrino Production in the Sun
15.4.2 Neutrino Detection (I)
15.4.3 Neutrino Oscillations
15.4.4 Neutrino Detection (II)

16 Stellar Structure and Evolution
16.1 Energy Transport
16.1.1 Conduction
16.1.2 Convection
16.2 Stellar Models
16.2.1 Equations of Stellar Structure
16.2.2 The Sun
16.2.3 Other Stars
16.3 Evolution of Low-Mass Stars (M . 8 Mˇ)
16.3.1 Hydrogen, Helium, and Beyond
16.3.2 Observations
16.4 Evolution of High-Mass Stars (M & 8 Mˇ)
16.4.1 Beyond Carbon and Oxygen
16.4.2 Explosion: Supernova
16.4.3 Beyond Iron

17 Stellar Remnants 
17.1 Cold, Degenerate Gas
17.2 White Dwarfs
17.2.1 Equation of State
17.2.2 Polytropic Stars
17.2.3 Testing the Theory
17.3 Neutron Stars and Pulsars

18 Charting the Universe with Stars
18.1 Stellar Pulsations
18.1.1 Observations
18.1.2 Theory
18.2 Standard Candles

19 Star and Planet Formation
19.1 Gravitational Collapse
19.1.1 Equilibrium: Virial Temperature
19.1.2 Conditions for Collapse
19.1.3 Fragmentation
19.1.4 Collapse Time Scale
19.2 Gas Cooling
19.3 Halting the Collapse
19.3.1 Cessation of Cooling
19.3.2 Radiation Pressure
19.3.3 Other Effects
19.4 Protoplanetary Disks
19.4.1 Temperature Structure
19.4.2 Picture of Planet Formation

20 Cosmology: Early Universe
20.1 Cosmic Microwave Background Radiation
20.1.1 Hot Big Bang
20.1.2 Theory: Recombination Temperature
20.1.3 Observations
20.1.4 Implications
20.2 Big Bang Nucleosynthesis
20.2.1 Theory: “The First Three Minutes”
20.2.2 Observations: Primordial Abundances
20.3 How Did We Get Here?
Author: Charles Keeton

 

Tags: Inglês

Stellar Structure and Evolution

20/09/2022 14:13

This long-awaited second edition of the classical textbook on Stellar Structure and Evolution by Kippenhahn and Weigert is a thoroughly revised version of the original text. Taking into account modern observational constraints as well as additional physical effects such as mass loss and diffusion, Achim Weiss and Rudolf Kippenhahn have succeeded in bringing the book up to the state-of-the-art with respect to both the presentation of stellar physics and the presentation and interpretation of current sophisticated stellar models. The well-received and proven pedagogical approach of the first edition has been retained.

The book provides a comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The models developed to explain the stability, dynamics and evolution of the stars are presented and great care is taken to detail the various stages in a star’s life. Just as the first edition, which remained a standard work for more than 20 years after its first publication, the second edition will be of lasting value not only for students but also for active researchers in astronomy and astrophysics.

Clique aqui para acessar o livro.

Summary

Part I The Basic Equations
1 Coordinates, Mass Distribution, and Gravitational Field in Spherical Stars
1.1 Eulerian Description
1.2 Lagrangian Description
1.3 The Gravitational Field
2 Conservation of Momentum
2.1 Hydrostatic Equilibrium
2.2 The Role of Density and Simple Solutions
2.3 Simple Estimates of Central Values Pc; Tc
2.4 The Equation of Motion for Spherical Symmetry
2.5 The Non-spherical Case
2.6 Hydrostatic Equilibrium in General Relativity
2.7 The Piston Model
3 The Virial Theorem 
3.1 Stars in Hydrostatic Equilibrium
3.2 The Virial Theorem of the Piston Model
3.3 The Kelvin–Helmholtz Timescale
3.4 The Virial Theorem for Non-vanishing Surface Pressure
4 Conservation of Energy
4.1 Thermodynamic Relations
4.2 The Perfect Gas and the Mean Molecular Weight
4.3 Thermodynamic Quantities for the Perfect, Monatomic Gas
4.4 Energy Conservation in Stars
4.5 Global and Local Energy Conservation
4.6 Timescales

5 Transport of Energy by Radiation and Conduction 
5.1 Radiative Transport of Energy
5.1.1 Basic Estimates
5.1.2 Diffusion of Radiative Energy
5.1.3 The Rosseland Mean for
5.2 Conductive Transport of Energy
5.3 The Thermal Adjustment Time of a Star
5.4 Thermal Properties of the Piston Model
6 Stability Against Local, Non-spherical Perturbations
6.1 Dynamical Instability
6.2 Oscillation of a Displaced Element
6.3 Vibrational Stability
6.4 The Thermal Adjustment Time
6.5 Secular Instability
6.6 The Stability of the Piston Model
7 Transport of Energy by Convection 
7.1 The Basic Picture
7.2 Dimensionless Equations
7.3 Limiting Cases, Solutions, Discussion
7.4 Extensions of the Mixing-Length Theory
8 The Chemical Composition
8.1 Relative Mass Abundances
8.2 Variation of Composition with Time
8.2.1 Radiative Regions
8.2.2 Diffusion
8.2.3 Convective Regions
9 Mass Loss
Part II The Overall Problem
10 The Differential Equations of Stellar Evolution
10.1 The Full Set of Equations
10.2 Timescales and Simplifications
11 Boundary Conditions
11.1 Central Conditions
11.2 Surface Conditions
11.3 Influence of the Surface Conditions and Properties of Envelope Solutions
11.3.1 Radiative Envelope
11.3.2 Convective Envelopes
11.3.3 Summary
11.3.4 The T r Stratification
12 Numerical Procedure
12.1 The Shooting Method
12.2 The Henyey Method
12.3 Treatment of the First- and Second-Order Time Derivatives
12.4 Treatment of the Diffusion Equation
12.5 Treatment of Mass Loss
12.6 Existence and Uniqueness
Part III Properties of Stellar Matter
13 The Perfect Gas with Radiation
13.1 Radiation Pressure
13.2 Thermodynamic Quantities
14 Ionization 
14.1 The Boltzmann and Saha Formulae
14.2 Ionization of Hydrogen
14.3 Thermodynamical Quantities for a Pure Hydrogen Gas
14.4 Hydrogen–Helium Mixtures
14.5 The General Case
14.6 Limitation of the Saha Formula
15 The Degenerate Electron Gas 
15.1 Consequences of the Pauli Principle
15.2 The Completely Degenerate Electron Gas
15.3 Limiting Cases
15.4 Partial Degeneracy of the Electron Gas
16 The Equation of State of Stellar Matter
16.1 The Ion Gas
16.2 The Equation of State
16.3 Thermodynamic Quantities
16.4 Crystallization
16.5 Neutronization
16.6 Real Gas Effects
17 Opacity
17.1 Electron Scattering
17.2 Absorption Due to Free–Free Transitions
17.3 Bound–Free Transitions
17.4 Bound–Bound Transitions
17.5 The Negative Hydrogen Ion
17.6 Conduction
17.7 Molecular Opacities
17.8 Opacity Tables

 

18 Nuclear Energy Production
18.1 Basic Considerations
18.2 Nuclear Cross Sections
18.3 Thermonuclear Reaction Rates
18.4 Electron Shielding
18.5 The Major Nuclear Burning Stages
18.5.1 Hydrogen Burning
18.5.2 Helium Burning
18.5.3 Carbon Burning and Beyond
18.6 Neutron-Capture Nucleosynthesis
18.7 Neutrinos
Part IV Simple Stellar Models
19 Polytropic Gaseous Spheres 
19.1 Polytropic Relations
19.2 Polytropic Stellar Models
19.3 Properties of the Solutions
19.4 Application to Stars
19.5 Radiation Pressure and the Polytrope n D 3
19.6 Polytropic Stellar Models with Fixed K
19.7 Chandrasekhar’s Limiting Mass
19.8 Isothermal Spheres of an Ideal Gas
19.9 Gravitational and Total Energy for Polytropes
19.10 Supermassive Stars
19.11 A Collapsing Polytrope
20 Homology Relations
20.1 Definitions and Basic Relations
20.2 Applications to Simple Material Functions
20.2.1 The Case ı D 0
20.2.2 The Case ̨ D ı D ‘ D 1; a D b D 0
20.2.3 The Role of the Equation of State
20.3 Homologous Contraction
21 Simple Models in the U –V Plane 
21.1 The U–V Plane
21.2 Radiative Envelope Solutions
21.3 Fitting of a Convective Core
21.4 Fitting of an Isothermal Core
22 The Zero-Age Main Sequence 
22.1 Surface Values
22.2 Interior Solutions
22.3 Convective Regions
22.4 Extreme Values of M
22.5 The Eddington Luminosity
23 Other Main Sequences 
23.1 The Helium Main Sequence
23.2 The Carbon Main Sequence
23.3 Generalized Main Sequences
24 The Hayashi Line 
24.1 Luminosity of Fully Convective Models
24.2 A Simple Description of the Hayashi Line
24.3 The Neighbourhood of the Hayashi Line and the Forbidden Region
24.4 Numerical Results
24.5 Limitations for Fully Convective Models
25 Stability Considerations 
25.1 General Remarks
25.2 Stability of the Piston Model
25.2.1 Dynamical Stability
25.2.2 Inclusion of Non-adiabatic Effects
25.3 Stellar Stability
25.3.1 Perturbation Equations
25.3.2 Dynamical Stability
25.3.3 Non-adiabatic Effects
25.3.4 The Gravothermal Specific Heat
25.3.5 Secular Stability Behaviour of Nuclear Burning

Part V Early Stellar Evolution
26 The Onset of Star Formation 
26.1 The Jeans Criterion
26.1.1 An Infinite Homogeneous Medium
26.1.2 A Plane-Parallel Layer in Hydrostatic Equilibrium
26.2 Instability in the Spherical Case
26.3 Fragmentation
27 The Formation of Protostars 
27.1 Free-Fall Collapse of a Homogeneous Sphere
27.2 Collapse onto a Condensed Object
27.3 A Collapse Calculation
27.4 The Optically Thin Phase and the Formation of a Hydrostatic Core
27.5 Core Collapse
27.6 Evolution in the Hertzsprung–Russell Diagram
28 Pre-Main-Sequence Contraction
28.1 Homologous Contraction of a Gaseous Sphere
28.2 Approach to the Zero-Age Main Sequence
29 From the Initial to the Present Sun 
29.1 Known Solar Data
29.2 Choosing the Initial Model
29.3 A Standard Solar Model
29.4 Results of Helioseismology
29.5 Solar Neutrinos
30 Evolution on the Main Sequence 
30.1 Change in the Hydrogen Content
30.2 Evolution in the Hertzsprung–Russell Diagram
30.3 Timescales for Central Hydrogen Burning
30.4 Complications Connected with Convection
30.4.1 Convective Overshooting
30.4.2 Semiconvection
30.5 The Schonberg–Chandrasekhar Limit
30.5.1 A Simple Approach: The Virial Theorem and Homology
30.5.2 Integrations for Core and Envelope
30.5.3 Complete Solutions for Stars with Isothermal Cores

 

Part VI Post-Main-Sequence Evolution
31 Evolution Through Helium Burning: Intermediate-Mass Stars
31.1 Crossing the Hertzsprung Gap
31.2 Central Helium Burning
31.3 The Cepheid Phase
31.4 To Loop or Not to Loop
31.5 After Central Helium Burning
32 Evolution Through Helium Burning: Massive Stars
32.1 Semiconvection
32.2 Overshooting
32.3 Mass Loss
33 Evolution Through Helium Burning: Low-Mass Stars
33.1 Post-Main-Sequence Evolution
33.2 Shell-Source Homology
33.3 Evolution Along the Red Giant Branch
33.4 The Helium Flash
33.5 Numerical Results for the Helium Flash
33.6 Evolution After the Helium Flash
33.7 Evolution from the Zero-Age Horizontal Branch

 

Part VII Late Phases of Stellar Evolution
34 Evolution on the Asymptotic Giant Branch 
34.1 Nuclear Shells on the Asymptotic Giant Branch
34.2 Shell Sources and Their Stability
34.3 Thermal Pulses of a Shell Source
34.4 The Core-Mass-Luminosity Relation for Large Core Masses
34.5 Nucleosynthesis on the AGB
34.6 Mass Loss on the AGB
34.7 A Sample AGB Evolution
34.8 Super-AGB Stars
34.9 Post-AGB Evolution
35 Later Phases of Core Evolution
35.1 Nuclear Cycles
35.2 Evolution of the Central Region
36 Final Explosions and Collapse
36.1 The Evolution of the CO-Core
36.2 Carbon Ignition in Degenerate Cores
36.2.1 The Carbon Flash
36.2.2 Nuclear Statistical Equilibrium
36.2.3 Hydrostatic and Convective Adjustment
36.2.4 Combustion Fronts
36.2.5 Carbon Burning in Accreting White Dwarfs
36.3 Collapse of Cores of Massive Stars
36.3.1 Simple Collapse Solutions
36.3.2 The Reflection of the Infall
36.3.3 Effects of Neutrinos
36.3.4 Electron-Capture Supernovae
36.3.5 Pair-Creation Instability
36.4 The Supernova-Gamma-Ray-Burst Connection
Part VIII Compact Objects
37 White Dwarfs 
37.1 Chandrasekhar’s Theory
37.2 The Corrected Mechanical Structure
37.2.1 Crystallization
37.2.2 Pycnonuclear Reactions
37.2.3 Inverse ˇ Decays
37.2.4 Nuclear Equilibrium
37.3 Thermal Properties and Evolution of White Dwarfs
38 Neutron Stars 
38.1 Cold Matter Beyond Neutron Drip
38.2 Models of Neutron Stars
39 Black Holes
Part IX Pulsating Stars
40 Adiabatic Spherical Pulsations
40.1 The Eigenvalue Problem
40.2 The Homogeneous Sphere
40.3 Pulsating Polytropes
41 Non-adiabatic Spherical Pulsations 
41.1 Vibrational Instability of the Piston Model
41.2 The Quasi-adiabatic Approximation
41.3 The Energy Integral
41.3.1 The Mechanism
41.3.2 The ” Mechanism
41.4 Stars Driven by the Mechanism: The Instability Strip
41.5 Stars Driven by the ” Mechanism
42 Non-radial Stellar Oscillations 
42.1 Perturbations of the Equilibrium Model
42.2 Normal Modes and Dimensionless Variables
42.3 The Eigenspectra
42.4 Stars Showing Non-radial Oscillations
Part X Stellar Rotation
43 The Mechanics of Rotating Stellar Models
43.1 Uniformly Rotating Liquid Bodies
43.2 The Roche Model
43.3 Slowly Rotating Polytropes
44 The Thermodynamics of Rotating Stellar Models 
44.1 Conservative Rotation
44.2 Von Zeipel’s Theorem
44.3 Meridional Circulation
44.4 The Non-conservative Case
44.5 The Eddington–Sweet Timescale
44.6 Meridional Circulation in Inhomogeneous Stars
45 The Angular-Velocity Distribution in Stars
45.1 Viscosity
45.2 Dynamical Stability
45.3 Secular Stability

Authors: Rudolf Kippenhahn, Alfred Weigert, Achim Weiss

Tags: Inglês